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Abstract
Orbital ordering in V2O3 appears due to the orbital degeneracy of the doubly
degenerate ground state of the V3+ ions and causes an antiferromagnetic phase
transition in this compound. Assuming a crystal field of symmetry lower than
cubic and spin–orbit coupling, the magnetic properties of this compound have
been studied. Correlated effective-field theory is used to study the magnetic
properties of the insulating phase. The magnetic structure observed at low
temperature is also incorporated in the calculation.

1. Introduction

The transition metal oxides are important as regards their magnetic as well as their transport
properties. These oxides are Mott insulators in which an insulating-to-metallic transition can
be induced by changes in temperature and pressure, alloying and nonstoichiometry. V2O3

is one such compound which exhibits an antiferromagnetic-to-paramagnetic transition in the
insulating phase. The V2O3 system is now a topic of much interest because of its rich phase
diagram, although both theorists and experimentalists have been engaged in the investigation
of the transport and magnetic properties of this compound for a long time. Recently there
has been renewed interest in this compound due to the discovery of high-Tc phenomena in
Cu-based transition metal oxides. Recent [1, 2] studies, however, led to a new concept and
earlier theories may not give the correct picture [1] of V2O3. The antiferromagnetic ordering
[3] in the insulating phase suggests orbital ordering in the doubly degenerate Eg orbitals
consistent with neutron scattering results [4]. The recent photoemission and x-ray absorption
results [1] strongly suggest that the antiferromagnetic insulating ground state is not a spin-1/2
antiferromagnetic Mott–Hubbard insulator as assumed in earlier theories [5]. For transition
metal compounds, spin and orbital degrees of freedom play an important role in the physical
properties [6]. The orbital degeneracy can be lifted by several on-site mechanisms including
spin–orbit interaction and Jahn–Teller distortion. In addition to static Jahn–Teller distortion,
the dynamic process of virtual distortion also mediates the exchange interaction of pseudospins
on adjacent sites.
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2. Theory

In V2O3, each vanadium atom is surrounded by an octahedron of oxygen atoms. The oxidation
state of the vanadium ion is V3+ which has the 3d2 electronic configuration. The orbitally
degenerate d electronic level in the presence of an octahedral crystal field is split into a triply
degenerate (t2g) level and a doubly degenerate (eg) level with t2g lying lowest. The V3+

ion, therefore, in an octahedral field has the (t2g)
2 configuration and, according to Hund’s

mechanism, the ground term is 3T1g. This term has total spin S = 1 and total orbital angular
momentum L = 1 but with a negative sign [7]. So at each site where V3+ is situated one
can associate a 3P atomic or ionic term with an effective angular momentum L = 1 as the
T1g state is isomorphous [7] with the P state. Using this term for a given site and taking into
account the spin–orbit interaction, exchange interactions between two V3+ ions are considered
in the present investigation. As the ground state is an orbital triplet, it can be split into a
doublet (3Eg) and a singlet (3A2g) by an axial distortion. This is also included in the present
model. The effect of the lower-symmetry field is treated in the operator equivalent form and
interaction between two V3+ ions is introduced via the Heisenberg exchange interaction. All
of these interactions (lower-symmetry field, spin–orbit and exchange interaction) are treated
on the same footing, taking 3T1g to be the unperturbed state. The lower-symmetry field is such
that the ground state is a doublet (3Eg).

In V2O3 there is considerable overlap of Eg orbitals in the basal plane, as the bases are
of x, y symmetry [7] and as a result the exchange interaction is enhanced. This might be
responsible for the higher transition temperature as observed in V2O3 (TN ∼ 150 K). This
type of magnetic transition is treated in a theory [8] which goes beyond mean-field theory by
introducing fluctuation to some extent. In this theory, the correlation effect is introduced by
a temperature-dependent correlation parameter which is determined self-consistently via the
fluctuation-dissipation theorem. In this theory a local moment is developed in the magnetically
ordered phase and vanishes at the transition temperature.

The effective Hamiltonian at the ith lattice site occupied by a V3+ ion is given by [9]

H
eff

i = �[(Lz
i )

2 − 2] + λ �Li · �Si − J
∑

j

�Si · �Sj (1)

assuming exchange interaction to be isotropic. Here � is the lower-symmetry crystal-field
parameter, λ is the spin–orbit parameter and J is the exchange parameter. Using the correlated
effective-field (CEF) approximation [8, 9] the above Hamiltonian reduces to

H CEF
i = �[(Lz

i )
2 − 2] + λ �Li · �Si − J

∑
j,γ

αγ (S
γ

i )2 − 2J S
γ

i

∑
j,γ

(〈Sγ

j 〉 − αγ 〈Sγ

i 〉) (2)

where j is the number of nearest neighbours and γ stands for the Cartesian coordinates.
Incorporating the magnetic structure of V2O3 in the antiferromagnetic insulating phase, the
above Hamiltonian becomes

H
eff

i = �[(Lz
i )

2 − 2] + λ �Li · �Si − 3J (α‖ − α⊥)(Sz
i )2 − 6J (1 − α‖)〈Sz

i 〉Sz
i (3)

where αz = α‖ and αx = αy = α⊥ and �z is the direction in which spin moments are aligned
in the ordered phase. The correlation parameters α‖ and α⊥ are determined self-consistently
by using the fluctuation-dissipation theorem [8, 9].

Using this effective Hamiltonian, the static magnetic susceptibility is given by [10]

χγ (�q) = 1

kT

[
〈〈µγ

i : µ
γ

i 〉〉 − [J (�q) − αγ J (0)]〈〈µγ

i : S
γ

i 〉〉2
kT − [J (�q) − αγ J (0)]〈〈Sγ

i : S
γ

i 〉〉
]

(4)
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where J (�q) = ∑
nn J ei�q·�δ and �µi = κ �Li + 2�Si , κ = −1, in the present calculation. The

correlation parameters are determined self-consistently from the equation

αγ =
∑

�q

J γ (�q)kT

kT − 2(J γ (�q) − αγ J γ (0))〈〈Sγ

i : S
γ

i 〉〉
/ ∑

�q
J γ (0). (5)

For any operators �A, �B, the following hold good:

〈〈 �A : �B〉〉 = 〈 �A : �B〉 − 〈 �A〉〈 �B〉 (6)

〈 �A : �B〉 =
∑

n

ρn

[
AnnBnn + kT

∑
m 	=n

(AmnBnm + AnmBmn)/Em − En)

]
(7)

〈 �A〉 =
∑

n

ρnAnn (8)

where ρn denotes the probability of occupation of the eigenstate |n〉 of the effective Hamil-
tonian (3).

3. Results and discussion

Considering the spin–orbit parameter λ to be the free-ion value and � to be such that Eg

is the ground state, J is fixed in such a way that the antiferromagnetic-to-paramagnetic
transition takes place at 150 K as observed in V2O3. The uniform susceptibility and correlation
parameters calculated for the range of temperature 0–300 K are shown in figure 1 and figure 2
respectively. The local spin moment developed is shown in figure 3 which indicates a jump
in the order parameter. In the present calculation a honeycomb lattice is considered where
nearest-neighbour V3+ ions are arranged in a triangular lattice [1]. The parameters used in
this calculation are � = −550 K, λ = 110 K and J = 56.7 K which explain the magnetic
properties of the insulating phase fairly well [11, 12]. The experimental results [11] for the
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Figure 1. Variations of the susceptibilities with temperature. The full line represents the results
for χ⊥ and the broken one those for χ‖.
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Figure 2. Variations of the correlation parameters with temperature. The full line represents the
results for α⊥ and the broken one those for α‖.
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Figure 3. Variation of the local spin moment with temperature.

susceptibility along the direction perpendicular to the basal plane are shown in figure 4 and the
local moments observed [12] from the neutron scattering experiment are shown in figure 5. The
results indicate that there is qualitative agreement with the theoretical results. The transition
temperature is, of course, modified by later experiments. The Eg orbitals are confined to the
basal plane and, as a result, the overlaps of the Eg orbitals of two different atoms also lie in this
plane. A2g orbitals, on the other hand, are directed [13] perpendicular to the basal plane and
their overlap lies in that direction. Since the orbitally degenerate level Eg is responsible for
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Figure 4. The experimental susceptibility in the direction perpendicular to basal plane.

Figure 5. The temperature dependence of the (0.5, 0.5, 0) magnetic intensity.

the metallic character [1], the 2D approximation is accurate enough to explain the magnetic
properties of the insulating phase. The present model is, however, incapable of explaining the
magnetic properties of the metallic phase. Our model, though it leads to a spin triplet and
an orbitally doublet state being associated with each V3+ ion, shows a basic difference from
earlier models [1, 13]. In our calculation, many-electron coupling at a single site is considered
prior to the trigonal distortion, in contrast to the case for recent models proposed to describe
the metallic [1] and insulating phases [13] of V2O3.

A very recent study [1] on V2O3 reveals a new concept of orbital ordering in conformity
with the present model. In the present investigation, magnetic properties have been studied
in two dimensions and the results suggest that strong correlations of two electrons on a single
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site as well as on different sites are important. So in the metallic phase, orbital ordering of the
S = 1 state and not of the S = 1/2 state is to be considered. In V2O3 the orbital ordering may
be induced by the electron–phonon interaction and/or the electron–electron interaction and it
can couplewith themagnetic ordering strongly [14]. The origin of the exchange interaction lies
in the superexchange interaction between the magnetic ions (V3+) via the ligands (O atoms).
This interaction is appreciable in this compound as there is a considerable overlap of magnetic
orbitals of x, y symmetry [7] and ligand orbitals having p character in the basal plane which
means that the orbital ordering is related to superexchange interaction. The orbital moment
plays a vital role [15–17] in V2O3 and also in perovskite-type manganites which show the
colossal-magnetoresistance effect [18]. It appears that orbital degeneracy of d electrons, which
is lifted by a crystal field (static Jahn–Teller distortion) and which causes an orbital overlap
between the magnetic ions via the ligands, is responsible for the giant magnetoresistance.
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